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Abstract. A new approach to modeling spikes in power prices proposed earlier by the author is presented and
further developed. In contrast to the standard approaches, power prices with spikes as a non-Markovian stochastic
process are modeled that allows for modeling spikes directly as self-reversing jumps. It is shown how this approach
can be used to value and hedge European contingent claims on power with spikes. It is also shown that the values
of European contingent claims on power with spikes satisfy the Cauchy problem for a certain linear evolution
equation. In this way, the values of European contingent claims on power with spikes can be represented in terms
of the Green’s function for this Cauchy problem and the Green’s function itself can be interpreted in terms of the
values of the Arrow-Debreu securities on power with spikes.
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1. Introduction

As the power markets are becoming deregulated worldwide, the modeling of spikes in power
prices is becoming a key problem in risk management, physical assets valuation, and derivat-
ives pricing.

In this article we present and further develop a new approach to modeling spikes in power
prices proposed by the author in [1–4]. The main motivation for our approach is that, in our
opinion, different mechanisms should be responsible for the reversion of power prices to their
long-term mean between spikes and for the reversion of power prices to their long-term mean
during spikes, that is, for the decay of spikes. This is due to the substantial difference in the
scales of the deviations of power prices from their long-term mean between spikes and during
spikes. For example, power prices in the United States Midwest in June 1998 rose to $7,500
per megawatt hour (MWh) compared with typical prices of around $30/MWh as a result of
unseasonably hot weather, planned and unplanned outages, and transmission constrains [5].

In contrast to the standard approaches (see, for example, [5–8]) we model power prices
with spikes as a non-Markovian stochastic process that allows for modeling spikes directly
as self-reversing jumps. In this way, different mechanisms are, in fact, responsible for the
reversion of power prices to their long-term mean between spikes and during spikes.

Moreover, we suggest that employing a Markov process to model power prices with spikes
is ultimately making the same mechanism responsible for the reversion of power prices to their
long-term mean both between spikes and during spikes. Indeed, although a Markov process
can produce a sharp upward price movement as a suitable jump, it can not remember the
magnitude of this sharp upward price movement to separately produce a shortly followed
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sharp downward price movement of approximately the same magnitude so that a spike can
form.

While the stochastic process we propose is non-Markovian, it can be represented as a
product of two Markov processes, the spike process and the process for power prices in the
absence of spikes. The spike process is responsible for modeling spikes in power prices. It is
either equal to a multiplicative magnitude of a spike during the spike or to unity between
spikes. The spike process is constructed with the help of a two-state Markov process in
continuous time. This two-state Markov process determines whether power prices are in the
spike state, that is, during a spike or in the inter-spike state, that is, between spikes. If power
prices are in the spike state, the multiplicative magnitude of the spike is determined by a
random variable with a suitable distribution. We note that the spike process constructed in this
way, among other things, allows for the parameters of spikes such as duration, frequency and
magnitude to be relatively easily estimated directly from market data. The remaining process,
the process for power prices in the absence of spikes is responsible for modeling power prices
between spikes.

Although the process we propose is non-Markovian, it can be represented as a Markov
process with a suitably extended state space that, in addition to the power price, also includes
the magnitude of spikes. With the help of this Markov process with the extended state space we
obtain a relatively simple analytical expression for the values of European contingent claims
on power with spikes provided that the corresponding European contingent claims can be
valued in the case of the process for power prices in the absence of spikes. This, for example,
enables us to obtain a relatively simple analytical expression for power forward prices for
power with spikes provided that corresponding power forward prices are known in the case of
the process for power prices in the absence of spikes. Moreover, with the help of the Markov
process with the extended state space, we show that the values of European contingent claims
on power with spikes satisfy the Cauchy problem for a certain linear evolution equation. In
this way, the values of European contingent claims on power with spikes can be represented
in terms of the Green’s function for this Cauchy problem and the Green’s function itself can
be interpreted in terms of the values of the Arrow-Debreu securities on power with spikes.

Another outcome of the non-Markovian process we propose is that it provides a natural
mechanism to explain the absence of spikes in the values of European contingent claims on
power far enough from their expiration time while power prices exhibit spikes. As a special
case we show that power forward prices far enough from the maturity time of the forward
contracts on power do not exhibit spikes while power prices, or more precisely power spot
prices, do.

Finally, we consider a practically important special case when power forward prices for
power without spikes follow a geometric Brownian motion. This is, for example, when power
prices in the absence of spikes follow a geometric mean-reverting process. We show that in
this case power forward prices for power with spikes also follow the same geometric Brownian
motion far enough from the maturity time of the forward contracts on power. This allows for
the valuation of European contingent claims on forwards on power for power with spikes
in terms of European contingent claims on forwards on power in the Black-Scholes market
environment. This also allows for the dynamic hedging of European contingent claims on
forwards on power for power with spikes via the standard delta hedging.
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2. The non-Markovian process for power prices with spikes

In this section we define the non-Markovian process for power prices with spikes as a product
of two Markov processes, the spike process and the process for power prices in the absence of
spikes. The spike process is responsible for modeling spikes in power prices and the process
for power prices in the absence of spikes is responsible for modeling power prices between
spikes.

2.1. THE TWO-STATE MARKOV PROCESS

As we discussed in the Introduction, we construct the spike process with the help of a two-state
Markov process in continuous time. This two-state Markov process will determine whether
power prices are in the spike state, that is, during a spike or in the inter-spike state, that is,
between spikes.

Denote this two-state Markov process with continuous time t ≥ 0 by Mt . Let

P(T , t) =
(

Pss(T , t) Psr(T , t)

Prs(T , t) Prr(T , t)

)
, t ≤ T ,

be its 2×2 transition matrix, where Pss(T , t) and Prs(T , t) are the transition probabilities from
the spike state at time t to the spike and inter-spike states at time T , and where Psr(T , t) and
Prr(T , t) are the transition probabilities from the inter-spike state at time t to the spike and
inter-spike states at time T . We comment that the subscripts s and r stand for the spike state
and inter-spike, or regular, state.

We note that the Kolmogorov-Chapman equation for the Markov process Mt can be rep-
resented as follows

P(T , t) = P(T , τ)P (τ, t), t ≤ τ ≤ T , (1)

where P(T , t) is the 2×2 identity matrix whenever t = T .
The Markov process Mt can also be characterized in terms of its generators, that is, 2×2

matrixes defined as the rate of change of the transition matrix P(T , t) at times t ≥ 0. It turns
out that it is these generators of the Markov process Mt that will determine the duration and
frequency of spikes, that is, the expected lifetime of spikes and expected time between spikes.
In this way, it is these generators of the Markov process Mt that can be estimated directly from
market data.

More precisely, a one-parameter family {L(t) : t ≥ 0} of 2×2 real matrixes defined by

L(t) = d

dT
P (T , t)|T =t (2)

is said to generate the Markov process Mt and the matrix

L(t) =
(

Lss(t) Lsr(t)

Lrs(t) Lrr(t)

)

is called a generator.
It can be shown that for each time t ≥ 0:

Lss(t) + Lrs(t) = 0 and Lss(t) ≤ 0, Lrs(t) ≥ 0,

Lrr(t) + Lsr(t) = 0 and Lrr(t) ≤ 0, Lsr(t) ≥ 0,
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and hence each generator L(t) can be characterized by two non-negative real numbers

a(t) = −Lss(t) = Lrs(t) and b(t) = −Lrr(t) = Lsr(t) . (3)

In terms of the generators of the Markov process Mt , each transition matrix P(T , t) is
given by the following exponential of a matrix

P(T , t) = e
∫ T
t L(τ)dτ . (4)

We comment that in the case when the generators L(t) do not commute for different times
t ≥ 0, the exponential of the matrix in (4) has to be replaced by the product integral. (For the
definition of the product integral see, for example, [9, Chapter 1]).

In the practically important special case of a time-homogeneous Markov process Mt , the
transition matrix P(T , t) is, in fact, a function of the difference T – t:

P(T − t) =
(

Pss(T − t) Psr(T − t)

Prs(T − t) Prr(T − t)

)
.

In this case, due to relationship (2), the generators L(t) are, in fact, time-independent:

L =
(

Lss Lsr

Lrs Lrr

)
,

and hence relationship (4) takes the following form P(T − t) = e(T −t )L, t ≤ T . Therefore,
in the case of a time-homogeneous Markov process Mt with the generator L the transition
matrix P(T − t) is given by

P(T − t) =




b + ae−(T −t )(a+b)

a + b

b − be−(T −t )(a+b)

a + b

a − ae−(T −t )(a+b)

a + b

a + be−(T −t )(a+b)

a + b


 , (5)

where, according to relationship (3), a ≥ 0 and b ≥ 0 are given by a = −Lss = Lrs and
b = −Lrr = Lsr , and where the case of a + b = 0 is understood as the corresponding limit.

In another practically important special case when the Markov process Mt is time-homo-
geneous on time subintervals, its generators L(t) are time-independent on these time subin-
tervals and hence the transition probabilities P(T , t) can also be found analytically with the
help of relationships (1) and (5). In practice, a general two-state Markov process Mt can
be approximated with any desired degree of accuracy by a two-state Markov process that is
time-homogeneous on time subintervals.

Later in the article we will need the following decompositions of the transition probabilities
of the Markov process Mt (see, for example, [1–4]):

Pss(T , t) = e
∫ T
t Lss(τ )dτ + ∫ T

t
Prs(τ, t)Lsr(τ )e

∫ T
τ Lss (τ

′)dτ ′
dτ,

Psr(T , t) = ∫ T

t
Prr (τ, t)Lsr(τ )e

∫ T
τ Lss(τ

′)dτ ′
dτ.

(6)

We note that the first relationship in (6) can also be written as follows:

Pss(T , t) = P s
ss(T , t) + P r

ss(T , t), (7)

where

P s
ss(T , t) = e

∫ T
t Lss(τ )dτ (8)
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and

P r
ss(T , t) =

∫ T

t

Prs(τ, t)Lsr(τ )e
∫ T
τ Lss(τ

′)dτ ′
dτ. (9)

2.2. THE SPIKE PROCESS

We will define the spike process that will be responsible for modeling spikes in power prices.
Let ξt > 1 with t ≥ 0 be independent random variables with the probability density functions
�(t, ξ). We comment that ξt will be interpreted as the multiplicative magnitude of spikes that
start at time t and �(t, ξ) as the conditional probability density function for the mutiplicative
magnitude of spikes that start at time t .

We define the spike process λt ≥ 1 with t ≥ 0 as follows. If the Markov process Mt is
in the inter-spike state then the spike process λt is equal to unity. If the Markov process Mt

transits into the spike state at time τ , then the spike process λt is equal to the value of the
random variable ξτ during the entire time that the Markov process Mt remains in the spike
state. Finally, if the Markov process Mt is in the spike state at time t = 0 then the spike
process λt is initiated at some λ0 > 1.

It can be shown [1–4] that the spike process λt is, in fact, a Markov process and that its
transition probability density function �(t, T , λt , λT ), with the help of relationships in (6), is
given by

�(t, T , λt , λT ) =




e
∫ T
t Lss(τ )dτδ(λt − λT )+∫ T

t
�(τ, λT )Prs(τ, t)Lsr(τ )e

∫ T
τ Lss(τ

′)dτ ′
dτ+

Prs(T , t)δ(1 − λT )

if λt > 1

∫ T

t
�(τ, λT )Prr(τ, t)Lsr(τ )e

∫ T
τ Lss(τ

′)dτ ′
dτ+

Prr(T , t)δ(1 − λT )
if λt = 1

, (10)

where δ(x) is the Dirac delta function.
Finally, we will say that the spike process λt is in the spike state or inter-spike state if the

Markov process Mt is in the spike state or inter-spike state.

2.3. THE PROCESS FOR POWER PRICES IN THE ABSENCE OF SPIKES

We will define the process for power prices in the absence of spikes that will be responsible for
modeling power prices between spikes. Denote by �̂t > 0 the price (for example, in dollars)
of a unit of power (for example, in MWh) at time t ≥ 0 in the absence of spikes in power
prices. Assume that �̂t can be represented as a Markov process. For example, �̂t can be a
diffusion process defined by the following stochastic differential equation

d�̂t = µ(�̂t , t)dt + σ (�̂t, t)dWt, (11)

where µ(�̂t , t) is the drift, σ (�̂t, t) > 0 is the volatility, and Wt is the Wiener process. In
the practically important special case of the geometric mean-reverting process the preceding
stochastic differential equation takes the following form

d�̂t = η(t)(µ(t) − log �̂t )�̂tdt + σ (t)�̂tdWt, (12)
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where η(t) > 0 is the mean-reversion rate, µ(t) is the equilibrium mean, and σ (t) > 0 is the
volatility.

2.4. THE NON-MARKOVIAN PROCESS FOR POWER PRICES WITH SPIKES

Now we are ready to define the non-Markovian process for power prices with spikes. Denote
by �t > 0 the price (for example, in dollars) of a unit of power (for example, in MWh) at
time t ≥ 0 in the presence of spikes in power prices. Assume that the spike process λt and the
process �̂t for power prices in the absence of spikes are independent. Define the process �t

with t ≥ 0 as the product of the spike process λt and the process �̂t for power prices in the
absence of spikes:

�t = λt �̂t . (13)

It is easy to see that �t is a non-Markovian process. Indeed, in order to characterize the future
behavior of the process �t we need to know the current value of either the process λt or the
process �̂t in addition to the current value of the process �t . In other words, the state of the
power market at any time t ≥ 0 can be fully characterized by any pair of the values of the
processes �t , λt , and �̂t at time t. Moreover, it can be shown [2] that, although the process
�t is non-Markovian, it can be, in fact, represented as a Markov process that for any time
t ≥ 0 can be fully characterized, for example, by the values of the processes λt and �̂t at
time t . Equivalently, the non-Markovian process �t can be represented as a Markov process
with the extended state space that at any time t ≥ 0 consists of all possible pairs (λt , �̂t ) with
λt ≥ 1 and �̂t > 0. We will use this representation of the non-Markovian process �t as a
Markov process with the extended state space later in the article in the valuation of European
contingent claims on power with spikes.

We will say that the process �t for power prices with spikes is in the spike state or inter-
spike state if the spike process λt is in the spike state or inter-spike state, or equivalently, if
the Markov process Mt is in the spike state or inter-spike state.

Now we will show that the spike state of the process �t can mimic spikes in power prices,
that is, exhibit sharp upward price movements shortly followed by equally sharp downward
price movements of approximately the same magnitude. Since the expected times t̄s and t̄r for
the process �t to be in the spike and inter-spike states starting at time t coincide with those of
the Markov process Mt , we have

t̄s = ∫ ∞
t

(τ − t)e− ∫ τ
t a(τ ′)dτ ′

a(τ)dτ,

t̄r = ∫ ∞
t

(τ − t)e− ∫ τ
t b(τ ′)dτ ′

b(τ)dτ,
(14)

where a(t) and b(t) are defined in relationship (3).
In a practically important special case of a time-homogeneous Markov process Mt rela-

tionships in (14) take the following form

t̄s = ∫ ∞
t

(τ − t)e−a(τ−t )adτ = 1

a
,

t̄r = ∫ ∞
t

(τ − t)e−b(τ−t )bdτ = 1

b
,

(15)

so that the expected times t̄s and t̄r for the process �t to be in the spike and inter-spike states
starting at time t do not depend on t . If for each time t ≥ 0 the expected time t̄s for the process
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�t to be in the spike state is small relative to a characteristic time of change of the process �̂t ,
the spike state of the process �t can be interpreted as a spike in power prices. For example, if
�̂t is a diffusion process defined in (11) then the condition mentioned above can be restated
as follows

σ 2(�̂t , t) t̄s � 1 and µ(�̂t , t) t̄s � 1, t ≥ 0,

where µ(�̂t , t) is the drift and σ (�̂t , t) is the volatility of �̂t .
Under this interpretation, t̄s is the expected lifetime of a spike that starts at time t , and t̄r is

the expected time between two consecutive spikes when the first spike ends at time t . In this
way, a(t) and b(t) control the duration and frequency of spikes by means of relationships in
(14). For example, it is easy to see with the help of relationships in (14) that for short-lived
spikes a(t) has to be relatively large, while for rare spikes b(t) has to be relatively small.

The spike process λt is now responsible for modeling spikes in power prices. It is either
equal to a multiplicative magnitude of a spike during the spike or to unity between spikes.
In this way, �(t, λ) can be interpreted as the conditional probability density function for
the multiplicative magnitude of spikes that start at time t . Moreover, the Markov process
Mt determines whether power prices are in the spike state, that is, during a spike or in the
inter-spike state, that is, between spikes. Finally, since the spike process λt is equal to unity
between spikes, the process �t for power prices with spikes by its definition in relationship
(13) coincides between spikes with the process �̂t for power prices in the absences of spikes.
Therefore, the process �̂t for power prices in the absence of spikes is responsible for modeling
power prices between spikes.

We note that the parameters related to spikes are relatively easy to estimate directly from
market data. Indeed, under the assumption that the Markov process Mt is time-homogeneous,
according to relationships in (15) the parameters a and b can be estimated as the inverses of
the average lifetime of spikes and the average time between spikes. In practice, as we pointed
out earlier in the article, a general two-state Markov process Mt can be approximated with any
desired degree of accuracy by a two-state Markov process that is time-homogeneous on time
subintervals. The estimation of the conditional probability density function �(t, λ) for the
multiplicative magnitude of spikes can be based on the standard parametric or nonparametric
statistical methods. For the parametric statistical methods scaling or asymptotically scaling
probability distributions are of a particular practical importance [1–3].

Finally, we point out that the process �t for power prices with spikes can also be interpreted
in terms of a structural model [2]. For example, the Markov process Mt can be interpreted as
a service-repair process of a representative power plant whose failure at time t ≥ 0 results
in the spike in power prices with the multiplicative magnitude λt > 1 determined by the
conditional probability-density function �(t, λ). In this way, the spike state and inter-spike
state of the Markov process Mt can be interpreted as the down state, that is, the state when the
power plant is not in service while being repaired and the up state, that is, the state when the
power plant is in service. Moreover, a(t) and b(t) that determine the generators of the Markov
process Mt via relationships in (3) can be interpreted as the repair rate and failure rate of the
power plant at time t . In turn, the expected lifetime t̄s of a spike that starts at time t and the
expected time t̄r between two consecutive spikes when the first spike ends at time t can be
interpreted as the mean down time, that is, mean time to repair and the mean up time, that is,
mean time to failure of the power plant at time t .
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3. European contingent claims on power with spikes

In this section we present an analytical expression for the values of European contingent
claims on power in the case when the dynamics of the power prices with spikes are described
by the non-Markovian process �t defined earlier in the article. This is assuming that the
corresponding European contingent claims can be valued in the case of the process �̂t for
power prices in the absence of spikes. We also show how the values of European contingent
claims on power far enough from their expiration time do not exhibit spikes while the power
prices do.

3.1. VALUATION OF EUROPEAN CONTINGENT CLAIMS ON POWER WITHOUT SPIKES

In order to value European contingent claims on power in the case of the power prices with
spikes following the non-Markovian process �t , we need to value the corresponding European
contingent claims in the case of the process �̂t for power prices in the absence of spikes.

For a European contingent claim with inception time t , expiration time T and payoff g,
denote by Ê(t, T , g) = Ê(t, T , g)(�̂t ) its value at the inception time t as a function of the
power price �̂t at time t . We comment that, in contrast to a European option whose payoff
is always nonegative, the payoff of a European contingent claim, as a function of the power
price, can take both positive and negative values.

Assume now that �̂t is a risk-neutral process for the power prices in the absence of spikes.
Then the value Ê(t, T , g) = Ê(t, T , g)(�̂t ) of the European contingent claim with inception
time t , expiration time T and payoff g can be found as the discounted expected value of its
payoff

Ê(t, T , g)(�̂t ) = e− ∫ T
t r(τ )dτ

∫ ∞

0
P(t, T ,�̂t , �̂T )g(�̂T )d�̂T , (16)

where r(t) is the continuously compounded interest rate, and P(t, T , �̂t , �̂T ) is the risk-
neutral transition probability density function for �̂t as a Markov process.

For example, in the practically important special case of the mean-reverting market en-
vironment, that is, when �̂t follows a geometric mean-reverting process defined in (12),
relationship (16) takes the following form [10], [11]:

ÊMR(t, T , g)(�̂t ) = e−r̄ (t,T )(T −t )

σ̂ (t, T )
√

2π(T − t)

∫ ∞

0
e
− 1

2
(a(t,T ) log �̂t+b(t,T )−log �̂T )2

σ̂2(t,T )(T −t) g(�̂T )
d�̂T

�̂T

, (17)

where:

r̄(t, T ) = 1
T −t

∫ T

t
r(τ )dτ ,

σ̂ (t, T ) =
√

1
T −t

∫ T

t
σ 2(τ )e−2

∫ T
τ η(τ ′)dτ ′

dτ ,

a(t, T ) = e− ∫ T
t η(τ )dτ ,

b(t, T ) = ∫ T

t
η(τ)(µ(τ) − 1

2
σ 2(τ )

η(τ )
)e− ∫ T

τ η(τ ′)dτ ′
dτ .

Later in the article we will need an expression for the value of a European contingent
claim in the mean-reverting market environment in terms the value of the corresponding
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European contingent claim in the Black-Scholes market environment, that is, when the risk-
neutral dynamics of the price St of an underlying security are given by the geometric Brownian
motion

dSt = µBS(t)Stdt + σBS(t)StdWt,

where µBS(t) is the drift and σBS(t) > 0 is the volatility.
The value ÊBS

σ̄BS ,µ̄BS
(t, T , g) = ÊBS

σ̄BS ,µ̄BS
(t, T , g)(St ) in the Black-Scholes market environ-

ment of a European contingent claim with inception time t , expiration time T and payoff g is
given by (see, for example, [12, Chapters 8, 10]):

ÊBS
σ̄BS,µ̄BS

(t, T , g)(St ) = e−r̄ (t,T )(T −t )

σ̄BS

√
2π(T − t)

∫ ∞

0
e
− 1

2
(log(St /ST )+(µ̄BS− 1

2 σ̄2
BS

)(T−t))2

σ̄2
BS

(T −t) g(ST )
dST

ST

, (18)

where

σ̄BS =
√

1

T − t

∫ T

t

σ 2
BS(τ)dτ ,

µ̄BS = 1

T − t

∫ T

t

µBS(τ)dτ.

It can be shown [10], [13] that, with the help of relationships (17) and (18), the value
ÊMR(t, T , g) can be expressed in terms of the value ÊBS

σ̄BS,µ̄BS
(t, T , g) as follows:

ÊMR(t, T , g)(�̂t ) = ÊBS
σ̂ (t,T ),0(t, T , g)(�̂

a(t,T )
t eb(t,T )e(T −t ) 1

2 σ̂ 2(t,T )). (19)

In this way, the values ĈMR(t, T , �̂t , X) and P̂ MR(t, T , �̂t , X) in the mean-reverting mar-
ket environment of the European call and put options with inception time t , expiration time
T and strike X can be expressed [10], [13] in terms of the values ĈBS

σ̂ (t,T ),0(t, T , St , X) and

P̂ BS
σ̂ (t,T ),0(t, T , St , X) of the corresponding European call and put options in the Black-Scholes

market environment:

ĈMR(t, T , �̂t , X) = ĈBS
σ̂(t,T ),0(t, T , �̂

a(t,T )
t eb(t,T )e(T −t ) 1

2 σ̂ 2(t,T ), X),

P̂ MR(t, T , �̂t , X) = P̂ BS
σ̂ (t,T ),0(t, T , �̂

a(t,T )
t eb(t,T )e(T −t ) 1

2 σ̂ 2(t,T ), X),
(20)

where ĈBS
σ̄BS,µ̄BS

(t, T , St , X) and P̂ BS
σ̄BS,µ̄BS

(t, T , St , X) are given by the Black-Scholes formulas
(see, for example, [12, Chapters 7, 8]):

ĈBS
σ̄BS,µ̄BS

(t, T , St , X) = Ste(µ̄BS−r̄ (t,T ))(T −t )N(d+) − Xe−r̄ (t,T )(T −t )N(d−),

P̂ BS
σ̄BS,µ̄BS

(t, T , St , X) = Xe−r̄ (t,T )(T −t )N(−d−) − Ste(µ̄BS−r̄ (t,T ))(T −t )N(−d+),
(21)

with

d± = log(St/X) + (µ̄BS ± 1
2 σ̄

2
BS)(T − t)

σ̄BS

√
(T − t

,

N(x) = 1√
2π

∫ x

−∞
e−y2/2dy.
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3.2. VALUATION OF EUROPEAN CONTINGENT CLAIMS ON POWER WITH SPIKES

We will present an analytical expression for the values of European contingent claims on
power in the case when the dynamics of the power prices with spikes are given by the non-
Markovian process �t .

Consider a European contingent claim on power with inception time t , expiration time T

and payoff g that explicitly depends, in addition to the power price �T at time T , on the state,
spike or inter-spike state, of the power price �T and the magnitude of the related spike at time
T as determined by the value of the spike process λT at time T . Such payoff g, in view of the
definition of the process �t in (13), can be represented as a function of any pair of the values
of the processes �T , λT , and �̂T at time T . Throughout this article we will represent payoff
g as a function of λT and �̂T , that is g = gλT

(�̂T ) = g(λT �̂T , λT ). In this way, if the payoff
g depends only on the power price �T = λT �̂T at time T and does not explicitly depend on
the state, spike or inter-spike state, of the power price �T = λT �̂T at time T as determined
by the value of the spike process λT at time T then

gλT
(�̂T ) = g(λT �̂T ). (22)

We comment that a holder of the European contingent claim on power with inception
time t , expiration time T and payoff g will receive a (positive or negative) payment of either
gλT

(�̂T ) = g(λT �̂T , λT ) units of account if the power price �T = λT �̂T is in the spike state
at time T and the magnitude of the spike is λT > 1, or gλT =1(�̂T ) = g(λT �̂T , λT )|λT =1 units
of account if the power price �T = λT �̂T is in the inter-spike state at time T , that is λT = 1.
We also comment that by allowing the payoffs to explicitly depend on the state, spike or
inter-spike state and the magnitude of the related spike one can construct European contingent
claims on power that provide a better tailored protection for their holders against spikes in
power prices. Moreover, with the help of the beliefs-preferences gauge symmetry introduced
by the author in [14–17] one can construct a dynamically spanning set of European contingent
claims with such payoffs that allows for the beliefs-preferences-independent valuation and
dynamic replication of European contingent claims on power with spikes. In turn, this allows
for the beliefs-preferences-independent valuation and dynamic replication of more general
contingent claims on power with spikes such as universal contingent claims introduced by the
author in [10, 18–21], [2], [16], [22]. Those include Bermudan and American options.

As we discussed earlier in the article, the state of the power market at any time t ≥ 0
can be fully characterized by any pair of the values of the processes �t , λt and �̂t at time
t . In this regard, the value E(t, T , g) at inception time t of a European contingent claim
(on power with spikes) with inception time t , expiration time T and payoff g can be rep-
resented as a function of any pair of the values of the processes �t , λt,and �̂t at time t .
Throughout this article we will represent the value E(t, T , g) as a function of λt and �̂t , that
is E(t, T , g) = Eλt

(t, T , g)(�̂t ) = E(t, T , g)(λt �̂t , λt ). We comment that the value of the
European contingent claim (on power with spikes) with inception time t , expiration time T

and payoff g is either Eλt
(t, T , g)(�̂t ) = E(t, T , g)(λt �̂t , λt ) units of account if the power

price �t = λt�̂t is in the spike state at time t and the magnitude of the spike is λt > 1, or
Eλt=1(t, T , g)(�̂t ) = E(t, T , g)(λt �̂t , λt )|λt=1 units of account if the power price �t = λt�̂t

is in the inter-spike state at time t , that is λt = 1.
As we also discussed earlier in the article, the non-Markovian process �t can be repres-

ented as a Markov process with the state space that at any time t ≥ 0 consists of all possible
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pairs (λt , �̂t ) with λt ≥ 1 and �̂t > 0. Assume now that �t is a risk-neutral process for
power prices with spikes so that it can be represented as a risk-neutral Markov process with
the state space that at any time t ≥ 0 consists of all possible pairs (λt , �̂t ) with λt ≥ 1 and
�̂t > 0. Then the value E(t, T , g) of the European contingent claim (on power with spikes)
with inception time t , expiration time T and payoff g can be found as the discounted expected
value of its payoff. Moreover, it can be shown [1], [2], [4] with the help of relationships (10)
and (16) that the value E(t, T , g) of the European contingent claim on power with spikes can
be represented in terms of the value of the following European contingent claim on power
without spikes:

Eλt
(t, T , g)(�̂t ) = e− ∫ T

t r(τ )dτ
∫ ∞

0

∫ ∞
1 P(t, T , �̂t , �̂T )�(t, T , λt , λT )gλT

(�̂T )dλT d�̂T

= Ê(t, T , ḡλt
)(�̂t ), (23)

where the payoff ḡλt
= ḡλt

(�̂T ) is the risk-neutral average of the payoff gλT
over the mag-

nitude of spikes λT at time T given by

ḡλt
=

{
P s

ss(T , t)gλt
+ ∫ ∞

1 �s(t, T , λT )gλT
dλT + Prs(T , t)g1 if λt > 1∫ ∞

1 �r(t, T , λT )gλT
dλT + Prr(T , t)g1 if λt = 1

(24)

with

�s(t, T , λT ) = ∫ T

t
�(τ, λT )Prs(τ, t)Lsr(τ )e

∫ T
τ Lss(τ

′)dτ ′
dτ,

�r(t, T , λT ) = ∫ T

t
�(τ, λT )Prr(τ, t)Lsr(τ )e

∫ T
τ Lss (τ

′)dτ ′
dτ ,

(25)

and where P s
ss(T , t) is given in (8).

We comment that, due to the linearity of the value of a European contingent claim as a
function of its payoff and relationship (24), the value E(t, T , g) in (3.2) can also be repres-
ented as the risk-neutral average of the value Ê(t, T , gλT

) over the magnitude of spikes λT

at time T . Since this risk-neutral average can be viewed as a linear combination, possibly
continuous, of the values Ê(t, T , gλT

), a European contingent claim on power with spikes
can also be viewed as the corresponding portfolio of European contingent claims on power
without spikes.

In a special case when the conditional probability density function �(t, λ) for the muti-
plicative magnitude of spikes that start at time t is independent of time t and is equal to �(λ),
relationship (24) takes the following form

ḡλt
=

{
P s

ss(T , t)gλt
+ P r

ss(T , t)ḡ + Prs(T , t)g1 if λt > 1

Psr(T , t)ḡ + Prr(T , t)g1 if λt = 1
, (26)

where ḡ is the risk-neutral conditional average of the payoff gλT
over the magnitude of spikes

λT at time T given by

ḡ =
∫ ∞

1
�(λT )gλT

dλT , (27)

and where P r
ss(T , t) is given in (9). Moreover, in a special case of spikes with constant mag-

nitude λ, that is, when the conditional probability density function �(λ′) is the Dirac delta
function δ(λ − λ′), relationship (26) and hence (24) take the following form

ḡλt
=

{
Pss(T , t)gλ + Prs(T , t)g1 if λt = λ

Psr(T , t)gλ + Prr(T , t)g1 if λt = 1
(28)
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where we used the decomposition in (7).

3.3. LINEAR EVOLUTION EQUATION FOR EUROPEAN CONTINGENT CLAIMS ON POWER

WITH SPIKES AND THE ASSOCIATED GREEN’S FUNCTIONS

It can be shown [2] that the value E(t, T , g) in (3.2) of a European contingent claim on power
with spikes satisfies the Cauchy problem for the following linear evolution equation:

d

dt
v + L̂(t)v + �(t)v − r(t)v = 0, t < T,

v(T ) = g,
(29)

where L̂(t) and �(t) are the generators of the process �̂t for power prices in the absence of
spikes and of the spike process λt as Markov processes. (For the definition of the generators
of a general Markov process see, for example, [23, Chapter 2]).

It can also be shown [2] that the Green’s function G(t, T , �̂t , �̂T , λt , λT ) for the Cauchy
problem in (29) is given by

G(t, T , �̂t , �̂T , λt , λT ) = e− ∫ T
t r(τ )dτP (t, T , �̂t , �̂T )�(t, T , λt , λT ),

where P(t, T , �̂t , �̂T ) and �(t, T , λt , λT ) are defined in (16) and (10). Financially, the Green’s
function G(t, T , �̂t , �̂T , λt , λT ) is the value of the Arrow-Debreu security on power with
spikes, that is, the European option (on power with spikes) with inception time t , expiration
time T and payoff δ(�̂T − �̂ ′

T )δ(λT − λ′
T ), where δ(x) is the Dirac delta function. In this

regard, the value Eλt
(t, T , g)(�̂t ) in (3.2) of the European contingent claim (on power with

spikes) with inception time t , expiration time T and payoff g can be expressed in terms of the
Green’s function G(t, T , �̂t , �̂T , λt , λT ), and the European contingent claim on power with
spikes can be viewed as the corresponding portfolio of the Arrow-Debreu securities on power
with spikes.

We comment that, in a practically important special case when �̂t is a geometric mean-
reverting process defined in (12), the generator L̂(t) is given by

L̂(t) = 1

2
σ 2(t)�̂2 ∂2

∂�̂2
+ η(t)(µ(t) − log �̂)�̂

∂

∂�̂
.

In this case, the Green’s function G(t, T , �̂t , �̂T , λt , λT ) takes the following form

G(t, T , �̂t , �̂T , λt , λT ) =

e− ∫ T
t r(τ )dτ

(
1

σ̂ (t, T )
√

2π(T − t)
e
− 1

2
(a(t,T ) log �̂t+b(t,T )−log �̂T )2

σ̂2(t,T )(T −t)
1

�̂T

)
�(t, T , λt , λT ),

where σ̂ (t, T ), a(t, T ) and b(t, T ) are defined in (17).
We also comment that due to relationship (10) the generator �(t) is a linear integral

operator with the kernel:

�(t, λt , λ
′
t ) =

{
Lss(t)δ(λt − λ

′
t ) + Lrs(t)δ(1 − λ

′
t ) if λt > 1

�(t, λ
′
t )Lsr(t) + Lrr(t)δ(1 − λ

′
t ) if λt = 1

.
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For example, in the special case of spikes with constant magnitude λ the generator �(t) can
be represented as the 2×2 matrix L∗(t) transposed to the generator L(t) in (2) of the Markov
process Mt . In turn, v = v(t) and g can be represented as two-dimensional vector functions

v(t) =
(

Eλt=λ(t, T , g)

Eλt=1(t, T , g)

)
and g =

(
gλT =λ

gλT =1

)
.

We point out that �(t) represented as L∗(t) can also be expressed in terms of the Pauli
matrices which gives rise to an analogy between the linear evolution equation for European
contingent claims on power with spikes in (29) and the Schrödinger equation for a two-
component spinor describing a nonrelativistic spin 1/2 particle in an electromagnetic field.
(For the definition of the Pauli matrices, the Schrödinger equation and related terminology
see, for example, [24, Chapters 3, 4, 9]).

3.4. WHY VALUES OF EUROPEAN CONTINGENT CLAIMS ON POWER DO NOT EXHIBIT

SPIKES WHILE POWER PRICES DO

We will show [1], [2], [4] that, when the time to expiration of a European contingent claim
on power is relatively large with respect to the duration of spikes, the value of this European
contingent claim does not exhibit spikes, while the power prices do.

For simplicity we consider a special case when the spikes have constant magnitude λ and
the Markov process Mt is time-homogeneous. In this case the value E(t, T , g) of the European
contingent claim with inception time t , expiration time T and payoff g is determined by rela-
tionship (3.2) with the payoff ḡλt

given by (28), and the transition matrix P(T , t) = P(T − t)

of the Markov process Mt is given by (5).
With the help of relationship (5) the transition probabilities of the Markov process Mt can

be represented as follows

Pss(T − t) = πs + O(e−(T −t )a), Psr(T − t) = πs + O(e−(T −t )a),

Prs(T − t) = πr + O(e−(T −t )a), Prr(T − t) = πr + O(e−(T −t )a),
(30)

where

πs = b

a + b
and πr = a

a + b
(31)

are the ergodic probabilities of the Markov process Mt to be in the spike and inter-spike states,
and where O(e−(T −t )a) stands for a term of the order e−(T −t )a or higher.

Therefore, in view of relationship (30) the payoffs ḡλt=λ and ḡλt=1 in (28) coincide up to
the terms of the order O(e−(T −t )a):

ḡλt=λ = ḡerg + O(e−(T −t )a) and ḡλt=1 = ḡerg + O(e−(T −t )a), (32)

where ḡerg is the risk-neutral ergodic average of the payoff gλT
over the magnitude of spikes

λT at time T given by

ḡerg = πsgλT =λ + πrgλT =1, (33)

with the ergodic probabilities πs and πr given in (31).
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In turn, the values Eλt=λ(t, T , g) and Eλt=1(t, T , g) determined by relationship (3.2) with
the payoffs ḡλt=λ and ḡλt=1 given by (32) also coincide up to the terms of the order O(e−(T −t )a)

and hence can be combined into a single expression as follows:

E(t, T , g)(�̂t ) = Ê(t, T , ḡerg)(�̂t) + O(e−(T −t )a), (34)

where E(t, T , g) is either Eλt=λ(t, T , g) or Eλt=1(t, T , g).
In this regard, if the time to expiration T − t of a European contingent claim on power

with spikes is relatively large with respect to the expected lifetime of a spike t̄s = 1/a then
the values Eλt=λ(t, T , g) and Eλt=1(t, T , g) of the European contingent claim during a spike
and between spikes differ only by an exponentially small term of the order O(e−(T −t )a). As a
result, the value of a European contingent claim on power does not exhibit spikes while power
prices do. In turn, the value of a European contingent claim can start exhibiting spikes when
its time to expiration approaches the expected lifetime of a spike t̄s = 1/a.

We comment [2] that, in view of relationship (33), the value E(t, T , g) in (34) can also
be represented in terms of the risk-neutral ergodic average of the values Ê(t, T , gλT

) over the
magnitude of spikes λT at time T :

E(t, T , g)(�̂t ) = πsÊ(t, T , gλT =λ)(�̂t ) + πrÊ(t, T , gλT =1)(�̂t ) + O(e−(T −t )a). (35)

For example, it can be shown [2] that, in the case of the European call and put options with
strike X, relationship (35) takes the following form:

C(t, T , �̂t , X) = πsλĈ(t, T , �̂t , λ
−1X) + πrĈ(t, T , �̂t , X) + O(e−(T −t )a),

P (t, T , �̂t , X) = πsλP̂ (t, T , �̂t , λ
−1X) + πrP̂ (t, T , �̂t , X) + O(e−(T −t )a).

(36)

We point out that, in view of the interpretation of the process �t for power prices with
spikes in terms of the structural model that we discussed earlier in the article, the ergodic
probabilities πs and πr can be interpreted as the unavailability and availability of a represent-
ative power plant. The unavailability, or the forced outage rate, of a power plant is the ratio
of the forced outage hours to the total of the in service hours and the forced outage hours.
Similarly, the availability of a power plant is the ratio of the in service hours to the total of
the in service hours and the forced outage hours. In this way, the value E(t, T , g) in (35) of a
European contingent claim on power with spikes can be represented in terms of the weighted
sum of the values Ê(t, T , gλT =λ) and Ê(t, T , gλT =1) of European contingent claims that expire
during a spike and between spikes with weights equal to the unavailability and availability of
a representative power plant.

We comment that the presented analysis in the special case of spikes with constant mag-
nitude λ and the time-homogeneous Markov process Mt can be extended to the general case
[1], [2], [4]. For example, in the case of the time-independent conditional probability density
function �(λ) relationships (32–35) are still valid if gλT =λ is replaced by the conditional
average ḡ of the payoff gλT

over the magnitude of spikes λT at time T given in (27)
Finally, we consider [2] the following practically important special case when the risk-

neutral dynamics of power prices �̂t in the absence of spikes are given by a geometric mean-
reverting process defined in (12). In this case, relationship (34) takes the following form

E(t, T , g)(�̂t ) = ÊMR(t, T , ḡerg)(�̂t) + O(e−(T −t )a), (37)
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where the value of the European contingent claim in the mean-reverting market environment
can be found with the help of relationship (17). Moreover [2], in the case under consideration
the relationships in (36) take the following form

C(t, T , �̂t , X) = πsλĈMR(t, T , �̂t , λ
−1X) + πrĈ

MR(t, T , �̂t , X) + O(e−(T −t )a),

P (t, T , �̂t , X) = πsλP̂ MR(t, T , �̂t , λ
−1X) + πrP̂

MR(t, T , �̂t , X) + O(e−(T −t )a),
(38)

where the values of the European call and put options in the mean-reverting market environ-
ment can be found with the help of relationships (20) and (21). We comment that in view of
relationships (19) and (18) the value in (37) of a European contingent claim on power with
spikes can be represented in terms of the value of a European contingent claim in the Black-
Scholes market environment. For example, in view of relationship (20) the values in (38) of
European call and put options on power with spikes can be represented in terms of the values
of European call and put options in the Black-Scholes market environment that are given by
the Black-Scholes formulas in (21).

4. Modeling power forward prices for power with spikes

In this section we present an analytical expression for the power forward prices in the case
when the dynamics of the power prices, or more precisely power spot prices, with spikes are
described by the non-Markovian process �t defined earlier in the article. This is assuming
that the corresponding power forward prices are known in the case of the process �̂t for
power prices in the absence of spikes. We also show how the power forward prices far enough
from the maturity time of the forward contracts on power do not exhibit spikes while the
power prices do. This allows for the analytical valuation and dynamic hedging of European
contingent claims on forwards on power in the practically important special case when �̂t is
a geometric mean-reverting process.

4.1. POWER FORWARD PRICES FOR POWER WITHOUT SPIKES

In order to find power forward prices in the case of the power prices, or more precisely power
spot prices, with spikes following the non-Markovian process �t we need to find the corres-
ponding power forward prices in the case of the process �̂t for power prices in the absence of
spikes.

Assume now that �̂t is a risk-neutral process for power prices in the absence of spikes.
Then the power forward price F̂ (t, T ) = F̂ (t, T )(�̂t) at time t for the forward contract with
maturity time T can be found as the risk-neutral expected value of the power prices �̂T at
time T :

F̂ (t, T )(�̂t ) =
∫ ∞

0
P(t, T ,�̂t , �̂T )�̂T d�̂T , (39)

where P(t, T , �̂t , �̂T ) is the risk-neutral transition probability density function for �̂t as a
Markov process.

For example, in the practically important special case when the risk-neutral dynamics of
power prices �̂t in the absence of spikes are given by a geometric mean-reverting process
defined in (12), relationship (39) takes the following form [10], [2], [3], [13]:

F̂ (t, T )(�̂t ) = e(T −t ) 1
2 σ̂ 2(t,T )eb(t,T )�̂

a(t,T )
t , (40)
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where σ̂ (t, T ), a(t, T ) and b(t, T ) are given in (17). Moreover, the risk-neutral dynamics of
the power forward prices F̂ (t, T ) are given by the geometric Brownian motion with the zero
drift:

dF̂ (t, T ) = σF̂ (t)F̂ (t, T )dWt, (41)

where the volatility σF̂ (t) > 0 is given by

σF̂ (t) = σ (t)e− ∫ T
t η(τ )dτ .

4.2. POWER FORWARD PRICES FOR POWER WITH SPIKES

Now we will present an analytical expression for the power forward prices in the case when the
dynamics of the power prices, or more precisely power spot prices, with spikes are described
by the non-Markovian process �t .

As we discussed earlier in the article the state of the power market at any time t ≥ 0 can
be fully characterized by any pair of the values of the processes �t , λt and �̂t at time t . In
this regard, the power forward price F(t, T ) at time t for the forward contract (on power with
spikes) with maturity time T can be represented as a function of any pair of the values of
the processes �t , λt,and �̂t at time t . Throughout this article we will represent F(t, T ) as a
function of λt and �̂t , that is F(t, T ) = Fλt

(t, T )(�̂t ) = F(t, T )(λt�̂t , λt ). We comment
that the power forward price F(t, T ) at time t for the forward contract (on power with spikes)
with maturity time T is either Fλt

(t, T )(�̂t) = F(t, T )(λt�̂t , λt ) units of account if the power
price �t = λt�̂t is in the spike state at time t and the magnitude of the spike is λt > 1, or
Fλt=1(t, T )(�̂t ) = F(t, T )(λt�̂t , λt )|λt=1 units of account if the power price �t = λt�̂t is in
the inter-spike state at time t , that is λt = 1.

As we also discussed earlier in the article, the non-Markovian process �t can be repres-
ented as a Markov process with the state space that at any time t ≥ 0 consists of all possible
pairs (λt , �̂t ) with λt ≥ 1 and �̂t > 0. Assume now that �t is a risk-neutral process for
power prices with spikes so that it can be represented as a risk-neutral Markov process with
the state space that at any time t ≥ 0 consists of all possible pairs (λt , �̂t ) with λt ≥ 1 and
�̂t > 0. Then the power forward price F(t, T ) at time t for the forward contract (on power
with spikes) with maturity time T can be found as the risk-neutral expected value of the power
prices �T at time T . Moreover, it can be shown [2], [3] with the help of relationships (10) and
(39) that the power forward price F(t, T ) for power with spikes can be expressed in terms of
the corresponding power forward price F̂ (t, T ) for power without spikes:

Fλt
(t, T )(�̂t) = λ̄λt

(t, T )F̂ (t, T )(�̂t ), (42)

where λ̄λt
(t, T ) is the risk-neutral average magnitude of spikes at time T given by

λ̄λt
(t, T ) =

{
P s

ss(T , t)λt + ∫ ∞
1 �s(t, T , λT )λT dλT + Prs(T , t) if λt > 1∫ ∞

1 �r(t, T , λT )λT dλT + Prr(T , t) if λt = 1
, (43)

where P s
ss(T , t) is given in (8), and �s(t, T , λT ) and �r(t, T , λT ) are given in (25).

In a special case when the conditional probability density function �(t, λ) for the muti-
plicative magnitude of spikes that start at time t is independent of time t and is equal to �(λ),
relationship (43) takes the following form

λ̄λt
(t, T ) =

{
P s

ss(T , t)λt + P r
ss(T , t)λ̄ + Prs(T , t) if λt > 1

Psr(T , t)λ̄ + Prr(T , t) if λt = 1
, (44)
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where λ̄ is the risk-neutral conditional average magnitude of spikes given by

λ̄ =
∫ ∞

1
�(λ)λdλ, (45)

and where P r
ss(T , t) is given in (9).

Moreover, in a special case of spikes with constant magnitude λ, that is, when the con-
ditional probability density function �(λ′) is the Dirac delta function δ(λ − λ′), relationship
(44) and hence (43) take the following form

λ̄λt
(t, T ) =

{
Pss(T , t)λ + Prs(T , t) if λt = λ

Psr(T , t)λ + Prr(T , t) if λt = 1
. (46)

Finally, we comment that it is with the help of the expression in (42) for the power forward
prices F(t, T ) for power with spikes that the risk-neutral process �t for power prices with
spikes can be calibrated to market data.

4.3. WHY POWER FORWARD PRICES DO NOT EXHIBIT SPIKES WHILE POWER PRICES DO

We will show [2], [3] that when the time to maturity of a forward contract on power is re-
latively large with respect to the duration of spikes the power forward prices do not exhibit
spikes while the power prices, or more precisely power spot prices, do.

For simplicity, we again consider a special case when the spikes have constant magnitude
λ and the Markov process Mt is time-homogeneous. In this case the power forward price
F(t, T ) at time t for the forward contract with maturity time T is determined by relationship
(42) with the average magnitude of spikes λ̄λt

(t, T ) given by (46), and the transition matrix
P(T , t) = P(T − t) of the Markov process Mt is given by (5).

In view of relationship (30) the average magnitudes of spikes λ̄λt=λ(t, T ) and λ̄λt=1(t, T )

given by (46) coincide up to the terms of the order O(e−(T −t )a):

λ̄λt=λ(t, T ) = λ̄erg + O(e−(T −t )a) and λ̄λt=1(t, T ) = λ̄erg + O(e−(T −t )a), (47)

where λ̄erg is the risk-neutral ergodic average magnitude of spikes given by

λ̄erg = πsλ + πr, (48)

with the ergodic probabilities πs and πr given in (31).
In turn, the power forward prices Fλt=λ(t, T )(�̂t ) and Fλt=1(t, T )(�̂t ) determined by rela-

tionship (42) with the average magnitude of spikes λ̄λt=λ(t, T ) and λ̄λt=1(t, T ) given by (47)
also coincide up to the terms of the order O(e−(T −t )a) and hence can be combined into a single
expression as follows:

F(t, T )(�̂t ) = λ̄ergF̂ (t, T )(�̂t ) + O(e−(T −t )a), (49)

where F(t, T )(�̂t ) is either Fλt=λ(t, T )(�̂t ) or Fλt=1(t, T )(�̂t ).
In this regard, if the time to maturity T − t of the forward contract on power is relatively

large with respect to the expected lifetime of a spike t̄s = 1/a then the power forward prices
Fλt=λ(t, T )(�̂t ) and Fλt=1(t, T )(�̂t ) during a spike and between spikes differ only by an
exponentially small term of the order O(e−(T −t )a). As a result, the power forward prices
do not exhibit spikes while the power prices do. In turn, the power forward prices can start
exhibiting spikes and resembling the power prices when the forward contract nears its maturity
with the time to maturity T − t approaching the expected lifetime of a spike t̄s = 1/a. For
example, consider a practically important special case when, in the absence of spikes in power



250 V.A. Kholodnyi

prices, the risk-neutral dynamics of power forward prices F̂ (t, T ) are given by the geometric
Brownian motion in (41). This is, for example, when the risk-neutral dynamics of power prices
�̂t in the absence of spikes are given by a geometric mean-reverting process in (12) so that
F̂ (t, T ) is given in (40). Then, even in the presence of spikes in the power prices, when the
time to maturity T − t of the forward contract on power is relatively large with respect to
the expected lifetime of a spike t̄s = 1/a the risk-neutral dynamics of power forward prices
F(t, T ) are also given by the geometric Brownian motion in (41). This can be used to estimate
the volatility of the geometric Brownian motion for the power forward prices F̂ (t, T ), as well
as the volatility and the mean-reversion rate of the geometric mean-reverting process for the
power prices �̂t . This can also be used in the valuation and dynamic hedging of European
contingent claims on forwards on power that we will discuss later in the article.

Finally, we comment that the presented analysis in the special case of spikes with constant
magnitude λ and the time-homogeneous Markov process Mt can be extended to the general
case [2], [3]. For example, in the case of the time-independent conditional probability density
function �(λ) relationships (47–49) are still valid if the magnitude of spikes λ is replaced by
the conditional average magnitude of spikes λ̄ given by (45).

4.4. VALUATION AND HEDGING OF EUROPEAN CONTINGENT CLAIMS ON FORWARDS ON

POWER FOR POWER WITH SPIKES

Consider a practically important special case when the risk-neutral dynamics of power prices
�̂t in the absence of spikes are given by a geometric mean-reverting process in (12). We will
show that the value of a European contingent claim on forwards on power for power with
spikes can be expressed in terms of the value of a European contingent claim on forwards
on power in the Black-Scholes market environment. This allows for the dynamic hedging of
European contingent claims on forwards on power for power with spikes via the standard delta
hedging.

For simplicity we again consider a special case when the spikes have constant magnitude λ

and the Markov process Mt is time-homogeneous. It can be shown [2] that due to relationships
(19), (40) and (49) the value E(t, T , g) in (37) of a European contingent clam on power with
spikes can be expressed in terms of the power forward price F(t, T ) for power with spikes:

E(t, T , g)(F ) = ÊBS
σ̂ (t,T ),0(t, T , ḡerg)(F/λ̄erg) + O(e−(T −t )a). (50)

Moreover, it can be shown [2] that the value E(t, T , g) in (50) of a European contingent
claim on forwards on power for power with spikes can be expressed in terms of the value of a
European contingent claim on forwards on power in the Black-Scholes market environment:

E(t, T , g)(F ) = ÊBS
σ̂ (t,T ),0(t, T , gerg)(F ) + O(e−(T −t )a), (51)

where gerg(�̂T ) = ḡerg(�̂T /λ̄erg), and where we used the homogeneity of the values of
European contingent claims in the Black-Scholes market environment.

In the case under consideration, as we discussed earlier in the article, if the time to maturity
T −t of the forward contract on power is sufficiently large with respect to the expected lifetime
of a spike t̄s = 1/a then the risk-neutral dynamics of power forward prices F(t, T ) for power
with spikes are given by the geometric Brownian motion in (41). Therefore, relationship (51)
allows for the dynamic hedging of European contingent claims on forwards on power for
power with spikes via the standard delta hedging.
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Finally, it can be shown [2] that in the case of the European call and put options with strike
X relationship (51) takes the following form:

C(t, T , F,X) = πs(λ/λ̄erg)Ĉ
BS
σ̂(t,T ),0(t, T , F, (λ/λ̄erg)

−1X)+
πr(1/λ̄erg)Ĉ

BS
σ̂ (t,T ),0(t, T , F, λ̄ergX) + O(e−(T −t )a),

P (t, T , F,X) = πs(λ/λ̄erg)P̂
BS
σ̂ (t,T ),0(t, T , F, (λ/λ̄erg)

−1X)+
πr(1/λ̄erg)P̂

BS
σ̂ (t,T ),0(t, T , F, λ̄ergX) + O(e−(T −t )a).

5. Extensions of the model and conclusions

The model for power prices with spikes and for the valuation of European contingent claims
on power presented in this article can be extended in the following ways:
• Both positive and negative multiplicative spikes as well as additive spikes and spikes of

more complex shapes can also be considered [1], [2].
• The assumption that the spike process and the process for power prices in the absence of

spikes are independent can be relaxed [1], [2]. Moreover, the spike process can be replaced
with an arbitrary suitable Markov process, or even a finite product of arbitrary suitable
Markov processes. This includes, as a special case, a multi-state Markov process and the
product of several two-state Markov processes. For example, in view of the interpretetion of
the non-Markovian process for power prices with spikes in terms of the structural model that
we discussed earlier in the article, a multi-state Markov process can be used to model spikes
in power prices as a result of partial outages and intermittent operation of a representative
power plant. In turn, a product of several two-state Markov processes can be used to model
spikes in power prices as a result of failure of multiple power plants.

• European contingent claims on power with spikes and other commodities whose prices do
not exhibit spikes can also be valued. Those include fuel-sensitive, weather-sensitive and
load-sensitive contingent claims such as spark spread options and full requirments contracts
[25], [26].

• European contingent claims on power at several distinct points on the grid with spikes in
all power prices can also be valued. Those include transmission options [27].

• Contingent claims of a general type such as universal contingent claims on power with
spikes can also be valued with the help of the semilinear evolution equation for universal
contingent claims [2], [16]. Those include Bermudan and American options. Universal
contingent claims and the semilinear evolution equation for universal contingent claims
were introduced by the author in [10], [18–22].
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